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A very simple method is described for eliminating certain instabilities and other diffi- 
culties in the solution of the Hartree-Fock (HF) equations. The method consists of 
subtracting, from both the homogeneous and inhomogeneous portions of the differential 
equation, terms which exactly compensate each other in the self-consistent limit. These 
terms are chosen so as to largely cancel the original inhomogeneous term and thereby 
make the equation a nearly homogeneous one. 

INTRODUCTION 

The electronic structure of an N-electron atom is usually discussed in terms of 
the concept of an electron configuration 

(nlll)wl (n,lp * * * (n,l,p ) c w, = N, (1) 
using basis wavefunctions constructed from products of N one-electron functions 

%h(~, 8, 4) = r-‘P&) Yh&(& 41, (2) 

where Y,, is a spherical harmonic. The radial functions Pi(r) = Pni, (r), one for 
each subshell (nJ$i, are usually found by solution of the Hartrec-Fock equations, 
which consist of a set of q-coupled inhomogeneous differential equations, each of 
the form 

[(d2/dr2) -t-m> - %I Pi(r) = g&). (3) 

The eigenvalue ci (which is here defined to be positive for bound electrons) is 
determined by the requirements that 

Pi(O) = P,(co) = 0, 

number of nodes of P,(r) = ni - Ii - 1, 

* Work done under the auspices of the US Atomic Energy Commission. 
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and 

by convention, the arbitrary phase of P,(r) is chosen such that the “initial slope” 
is positive: 

a, = [Pi(r)/rzi+l]T=o > 0. (7) 

The functionsfi and g, are somewhat complicated integral functions of the Pi(r), 
1 < j < q. Consequently, solution of the HF equations is usually carried out by 
a self-consistent iterative procedure of the following type. 

(a) On the mth iteration cycle, a set of trial functions Pj”(input) is chosen; 
(b) Using these Pi”, the functionsfi(r) and g&) are computed (each i); 
(c) For each of several values of ei the differential equation (3) is integrated 

numerically, until that value is found for which the function Pin”(output) 
satisfies the conditions (4)-(7) (each i). 

Steps (a) to (c) are repeated using new trial input functions, until each output 
function is identical with the corresponding input function within some suitable 
self-consistency criterion. The usual method of choosing new trial functions is to 
take 

Py+l(input) = cPjn”(output) + (1 - c) Pj”(input). (8) 

In almost all cases, this method works quite satisfactorily with some suitable 
value of c between about 0.3-0.7. However, for neutral and one- or twofold 
ionized atoms in the vicinity of the transition and rare-earth elements, the above 
iterative procedure diverges monotonically for excited d and/or f orbitals [l]. 
Several methods have been developed for stabilizing the iteration and obtaining 
self-consistent solutions [I, 21. These involve either use of negative values of c 
(i.e., extrapolation rather than interpolation to obtain a new trial input function), 
or choice of some unnormalized integral of the differential equation for the output 
function P,“(output), i.e., temporary relaxation of the condition (6). In practice, 
each of these methods tends to be rather tricky and slow to converge, and to 
possess something less than universal applicability. We here describe a new 
method which is very simple and logical, and which appears to converge rapidly 
and straightforwardly in all cases. 

NEW METHOD 

In order to understand this new method we first consider Fig. 1, taken from 
Griffin, Cowan and Andrew [l]. The solid curve represents the norm of that 



162 COWAN AND MANN 

integral Pi(r) of the differential equation (3) which satisfies (4), as a function of 
the energy parameter Ei . This curve has singularities at the eigenvalues cH1, eH2,..., 
of the homogeneous equation obtained by setting g,(r) E 0 in (3). Let us suppose 
that we were seeking an integral with a single node, for example, a 3p, 4d or Sf 
function. If the ordinate scale is such that unit norm occurs along the line C, 
then the desired integral corresponds either to the point C, or to the point C,’ 
(whichever integral has positive initial slope). In either case, the value of E lies 
close to the eigenvalue cH2 for the one-n ode integral of the homogeneous equation; 
it may be inferred that the effect of the exchange term qi(r) in (3) is small and that 
the integral Pi”(output) is much like the integral of the homogeneous equation. 
If, on the other hand, unit norm corresponds to the horizontal line B, then one 
of the single-node integrals (B,‘) occurs close to eH2, but the other (BJ occurs 
closer to the eigenvalue E$ of the zero-node integral of the homogeneous equation. 
In some cases with unit norm at C, the variation with E in the form of P(r) is quite 
different1 from that corresponding to Fig. 1, and the single-node normalized 
integral with positive initial slope occurs at the point marked C,, . 

FIG. 1. Typical norm curve for those integrals P(r) of the HF Eq. (3) which satisfy the bound- 
ary conditions (4). Singularities appear at energies +k (k = 1,2,3,4,...) that correspond to 
integrals of the associated homogeneous equation having 0, 1, 2, 3,. . . , nodes, respectively. 

Whenever the self-consistent integral corresponds to one of the cases Bl or C,, , 
it is evident that the effect of the exchange term g,(r) in (3) is very large, and that 
the desired single-node integral of (3) is rather different from the single-node 
integral of the homogeneous equation. These are the cases which are unstable 
in the sense described above, as can be seen from the plausibility argument given 
by Griffin et al. [l]: Suppose that the exchange term g,(r) is scaled down by some 
constant factor which is made to gradually approach zero, so that the inhomoge- 

1 Compare the lower half of Fig. 5 of [l] (which is, however, difficult to read clearly; the node 
count changes by unity at points slightly to the left of each singularity). 
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neous equation approaches the homogeneous equation as a limit. It may be seen 
from (3) that, for any E, the integral P,(r) of the inhomogeneous equation is 
scaled down by this same factor; thus each section of the norm curve decreases 
everywhere and approaches the limiting form of a square well (i.e., II P II = 0 
everywhere except at E = l Hk). In any of the cases C, , C,’ or B1’, the lowering of 
the norm curve forces E toward cH2, and the normalized integral of the inhomoge- 
neous equation approaches the correct (single-node) integral of the homogeneous 
equation. However, in the cases B, , C,, and Co’, E is forced toward l H1, and the 
normalized integral of (3) approaches the wrong (zero-node) integral of the 
homogeneous equation. 

Evidently, the self-consistent iteration can be stabilized by modifying the 
differential equation so as to make the effect of the inhomogeneous term small. 
Thus, let us consider the equation 

[(d2/dr2) +h(r) - hi(r) - ~~1 Pi(r) = qi(r) - hi(r) P,(input). (9) 

When self-consistency has been reached, P,(r) will be essentially identical with 
the trial input function Pi(input) and so (9) will reduce to the desired equation (3). 
Meanwhile, if hi(r) is chosen such that the right-hand side of (9) has nearly every- 
where a magnitude much smaller than I g&)1, then the inhomogeneous equation 
will be quite close to its associated homogeneous equation and the required 
solution of (9) will always correspond to one of the cases C, , C,’ or B,’ in Fig. 1. 
That is, the presence of the term ----hi(r) on the left-hand side of (9) has shifted 
the positions of the eigenvalues fH k of the homogeneous equation such that the 
value of ei for the appropriate normalized single-node integral of (9) necessarily 
lies close to eH2. 

A possible choice for the function hi(r) is a suitable modification [3,4] of the 
Slater p1j3 exchange term. However, a choice which is both simpler and more 
foolproof (especially when starting the iteration with poor trial functions, or 
when making calculations for a specific LS term rather than for the configuration- 
average energy) is to use simply 

hi(r) = kgi(r)/Pi(input), (10) 

where k = 0.95 appears to be satisfactory in all cases. The only complications 
arise from the singularities in hi that exist at the positions of the nodes of Pi(input). 
These singularities can be avoided by replacing the denominator of (10) with a 
function equal to P,(input), except that its magnitude at any point r is never 
allowed to become smaller than (say) 0.01 times the largest magnitude of P,(input) 
for any rl < r; an example is shown in Fig. 2. This modification still leaves a 
discontinuity in hi at the position of each node of Pi(input). In practice, these 
discontinuities seem to have only negligible effect on the integral P,(r) obtained 
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by numerical integration of (9); however, if desired, hi(r) can be smoothed by linear 
interpolation over a range of (say) five integration-mesh intervals centered about 
each discontinuity. 

FIG. 2. Dashed curve: A typical radial function P&r) having two nodes (n = 1 + 3). Solid 
curve: Modified function for use in the denominator of (10); for clarity of illustration, the cutoff 
has been made at 0.3 (rather than 0.01) times the magnitude of the preceding antinode. 

APPLICATIONS 

The method represented by Eqs. (9) and (lo), with the above-mentioned modifica- 
tion of the denominator of (IO), and with or without the further smoothing of hi, 
is almost trivially easy to code into any existing computer program for the numerical 
self-consistent-field solution of the HF equations. We have applied this procedure 
to the outermost, singly occupied orbital in a wide variety of configurations, 
including not only cases where the self-consistent solution of (3) corresponds to 
the point B, in Fig. 1 (“type 2” in the classification of Griffin et al.) and to C, 
(type 3), but also to cases B,’ and C, (type 1) and C,’ (type 0),2 where this procedure 
is not usually necessary. In all cases, this procedure converted the problem to one 
of type 1 or type 0. The self-consistent iteration therefore converged smoothly 
and rapidly, with the use of (8) and c s 0.3 or 0.4,3 and computing times were 
thus essentially the same as for normally stable cases; examples are given in 

2 Since exchange effects increase the strength of electron binding and therefore the magnitude 
of ci, one would not normally expect solutions with / ci I less than the corresponding 1 .$ I. 
However, type 0 solutions do occur when making calculations for a specific IS term (e.g., for 
the d electron of pd ‘P) rather than for the configuration average. (The node-count arrangement is 
like that of Fig. 5 of [l]; see footnote 1). 

8 For Ia I 6sSd5f the new procedure is required for both 5d and Sf, and c had to be cut to 
about 0.02. 
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Table I. The advantage of the new method, however, lies not so much in relatively 
minor savings in computing time as in providing an easily programmed, universal 
method which practically eliminates frustrating convergence failures. 

TABLE I 

Computing Times” to Self Consistency (seconds) for a CDC 7600 

Configuration Old Method New Method 

Ti I 3d24s4p 
Ti I 3dz4s4d 

La I 4f6s2 
La I 6s25f 

OS I 5de6s6p 
OS I 5d66s5f 

12 11 
186 11 

12 11 
16b 11 

54 50 
58" 37 

a Times are for 6 SCF iteration cycles for all Ti runs, and are for 5 SCF cycles for all La and 
OS runs. Times would be about five times longer for a CDC 6600 and fifteen times longer for an 
IBM 7094 II. 

B Using method M2 of Griffin et al. [I] for the final orbital. 

The price paid for this convenience is that the rapid changes in hi(r) near the 
zeros of Pi(r) introduce minor numerical inaccuracies in integration of the differen- 
tial equation. However, to all intents and purposes (i.e., to at least the seventh 
decimal place) the final function P,(r) was independent of the value of k used in (lo), 
of the cutoff value (0.01 or 0.1) used in modifying the denominator of (lo), and 
of whether or not the discontinuities in hi(r) were smoothed out, and was identical 
with the function obtained by the methods of Griffin et al. [l]. 

For some d orbitals where the solution is of type 2 when using (3), a value of k 
as small as 0.3 is sufficient to convert the solution of (9)-(10) to type 1 and thereby 
make the new method convergent. However, forforbitals where the solution of (3) 
is of type 3, k cannot be smaller than about 0.9; this is because the effect of hi 
in (9) must be large enough to produce the “collapse” of the integral of the homo- 
geneous equation and the corresponding unit decrease in the effective quantum 
number 

nk 
* zz (Q)-V2, 

and this collapse depends critically on the depth of the effective potential energy 
function hi -fi in the inner-well region [5]. 

For simplicity, we suggest that a value k g 0.95 be used in all cases, even when 
a smaller value would suffice. This has the minor disadvantage of always producing 
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a norm curve which has a very small magnitude except in the regions ei g Ebb, 
where the curve turns up very sharply and steeply towards co. However, this 
introduces only minor complications into the iteration on ci to find a normalized 
function P,(r), especially if a hyperbolic relation 

P&-) cc (Ei - Q)-1 

is assumed for the prediction of a new trial value for ei . 
The method (9)-(10) is valuable also for cases (including p orbitals, such as 3p 

in the configuration Na I 2pa3p) where the self-consistent solution of (3) is of the 
stable type 1 or 0, but where the initial estimate of the trial function P,(input) 
is so poor as to result (on the first cycle) in a norm curve having a minimum greater 
than unity [I], as when unit norm occurs along the ‘line A in Fig. 1. Routine 
use of (9) on at least the first cycle or two assures that the norm curve will always 
lie low enough that there exists a normalized output function with the correct 
number of nodes and positive initial slope. 

We have also found this new method to be useful in solution of the relativistic 
Dirac-Hartree-Fock equations [6]. It has made possible solution for certain 
excited d and f orbitals where standard methods failed completely, presumably 
for exactly the same reasons as in the HF problem, though we have not investigated 
this in detail. 
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